Tag Archives: innovation

In IoT ecosystem evolution, constraints = opportunities for IoT innovators

What are our opportunities for guiding the rapidly evolving IoT ecosystem? The Internet of Things, with its explosive growth, unprecedented variety of device & system types, lack of broadly shared language and conceptual frameworks to discuss and plan, lack of precedence for implementation, and the organizationally complex consumer systems — i.e. cities and institutions — required to implement and manage these IoT systems — all make for a challenging space. It can be difficult to even know where to start. One way to add structure and framework to the conversation is to introduce some constraints — and good news! There are constraints already there! They’re just not broadly seen or talked about yet.

What does a successful IoT system implementation look like ?

A natural source for constraints is from those things that define a successful IoT System implementation in an institution or city. I use two primary components to define IoT System implementation success:

  1. Return on Investment (ROI)
  2. Cyber risk profile

Regarding the first — ROI, does the system do what we thought it would do at the costs/investment that we thought would be incurred? As discussed in a recent post on IoT System costing, determining costs of IoT Systems implementation is different from traditional enterprise systems. Most institutions and cities have little experience at it and are generally not very good at it. Further, other subtleties such as expectations of the data created from deployed IoT systems across a spectrum of populations, demographics, & constituencies directly impact perceptions of system (and investment) success.

Regarding the second — cyber risk profile, did the IoT System implementation make things worse for the institution or city? Cyber risk profile degradation can come from poorly configured devices/endpoints, insufficient management resources (skill, capacity) for endpoints and data aggregators/controllers, inadequate vendor management, and others.

Constraints drive opportunities in the IoT ecosystem

These same two analysis requirements of a city’s or institution’s success, aka constraints, can also be used by innovators and providers of IoT systems. Knowledge of these constraints by IoT systems providers, these requirements for city/institution implementation success, creates opportunity for the IoT systems innovator and provider by identifying where they can help address organizational complexities in the course of pursuing ROI and cyber risk posture/profile objectives.

IoT systems are different

As discussed in other articles and posts, IoT Systems are different. The process of selecting, procuring, implementing, & managing IoT systems is different from doing the same for traditional enterprise systems such as email, calendaring, resource and customer management, etc. At least six aspects of IoT Systems contribute to this difference:

  1. High number and growth rate of IoT devices
  2. High degree of variability of device types & variability of multiple hardware/software components within a device
  3. Lack of language and frameworks to discuss IoT opportunities, risks
  4. IoT Systems span multiple organizations within an institution or city
  5. IoT endpoint/devices tend to be out of sight out of mind
  6. Lack of precedent for successfully implementing these systems, few examples, few patterns to follow

Of these differences, #4 – the organizational spanning aspect of IoT Systems — presents a subtle but substantial challenge. Deploying IoT Systems in a city or institution is not like deploying an enterprise application in a data center or SaaS in the cloud and then providing for end-user training and support. This, of course, does not mean that deploying large enterprise systems is easy by any stretch, but rather that there are more and different organizations required in the technical, operational, and management aspects of the system.  Because of this, new levels of inter-organizational cooperation and collaboration are sought. And, as we all have experienced, collaboration and cooperation is frequently touted but successful collaboration and cooperation is often not achieved — “the discrepancy between the promise of collaboration and the reality of persistent failure” (Koschmann).

Cities and institutions are complex multi-component organizations that offer a complex substrate for IoT System implementation. These complex IoT product and service consuming organizations are not blank slate, clean whiteboard, or powerpoint deck solution organizations. There is little homogeneity here.

IoT Systems innovators and providers that recognize these constraints brought on by these complex consumer systems, that seek to learn the institutional organizational challenges in detail, and get in the dirt at the outset with the city or institution will ultimately be IoT Systems ecosystem drivers.

“I built it in my garage, it works there, it’ll be awesome in your city!”

Because of the seemingly unbounded potential of IoT Systems solutions, there’s also room for undifferentiated, poorly provisioned, and poorly serviced garbage in this space.

Because of the newness of IoT Systems, often there are many technologies and many vendors without particularly long track records. There are some big names in the game of course — Cisco, Microsoft, Intel, Siemens for example. But there are many providers in that long tail, both proven and unproven, and some of them will offer great innovation and value. Some of them will not. The challenge for institutions and cities is to work to separate the wheat from the chaff as they select, procure, implement, and manage IoT Systems.

Going by name brand alone is not sufficient because there will be many new innovators and providers that do indeed offer promising and solid solutions that give a reasonable likelihood of ROI and an approach that does not degrade the existing cyber risk profile of the institution. Further, sometimes large companies can be problematic because they are used to throwing their weight around, possibly invested heavily in particular approaches, and may not be open to new or alternative approaches. This may or may not be with whom a city or institution wants to work.

Eyes off the bling for a moment

So how can a city or institution begin to separate the wheat from the chaff in choosing IoT systems? An initial step can be to take one’s eyes off of the ‘bling’ for a moment. The bling is all of the feature sets and bells and whistles that most think of when they think of IoT systems. So, a three step process would be:

  1. Take eyes off of the bling (feature sets, bells & whistles) for a moment
  2. Review implementation challenges internal to the institution
    • organizational spanning complexity
    • calculating IoT system support costs across all organizations
    • analyzing internally available skill sets and capacity
    • consider what criteria different demographics will use to assess success or failure
    • seek input in estimating cyber risk to which an  institution or city is already exposed to provide an estimated baseline
  3. Seek and prioritize IoT Systems innovators/providers that help address some of these internal organizational challenges and shortcomings

insideoutoutsidein

Cities and institutions look inside out — Some of their internal challenges include:

  • organizational complexity (spanning)
  • IoT system support staffing capacity
  • appropriate skill sets
  • IoT system support tools availability & experience
  • what ROI will a particular provider’s IoT system bring?
  • will implementing this IoT system make my cyber risk picture worse? how do I know?

IoT innovators & providers can look outside in —  and use these constraints to create market differentiators for their organizations, such as:

  • can I help city/institution address internal challenges?
  • can I provide tools to help them manage their system?
  • can I help them reach the ROI they were expecting?
  • can I help them mitigate their cyber risk from this implementation?

Not just one IoT System

We’ve been talking about just one prototypical IoT System for an institution or city. In practice, institutions and cities will have many IoT Systems. Many of these  IoT Systems will:

  • use shared technical resources of the city or institution, eg network and supporting systems
  • have interdependency with other systems
    • at device level
    • at data level
    • to include co-existing with legacy systems & new systems
  • dip into the same limited pool of skill sets and capacity for systems support

This further deepens the IoT Systems management challenge within the city or institution. Implementation challenges for these complex city and institutional consumers will only continue to grow. They won’t diminish.

IoT Systems innovators and providers that recognize and speak to this additional level of complexity — this ecosystem with multiple providers and vendors within an institution —  and provide options, services, and support to help cities and institutions manage this complexity will set themselves apart from the competition and develop longer lasting relationships.

In this seemingly open-ended space of IoT systems possibilities, identifying and developing solutions for organic complex consumer constraints and challenges can be a differentiator for IoT product innovators and service providers.

Internet2 Chief Innovation Office launches IoT Systems Risk Management Task Force

Internet2 has launched a national Task Force to study risk management needs around IoT Systems in Higher Education and research institutions. The Task Force is composed of Higher Education and research IT and Information Management leaders across the country and will explore the areas of IoT Systems selection, procurement, implementation, and management. At the end of 12 months, the IoT Systems Risk Management Task Force will deliver a set of recommendations for 3 – 5 areas of further in-depth work. (And in the interest of full disclosure, I am Chairing the IoT Systems Risk Management Task Force.)

Internet of Things Systems or IoT Systems offer great potential value to higher education, research, government, and corporate institutions. From energy management, to research automation systems, to systems that enhance student, faculty, staff, and public safety, to academic learning systems, IoT Systems offer great promise. However, these systems need to be implemented thoughtfully and thoroughly or the investment value won’t be realized. Further, because of the distributed computing and networking capabilities of IoT devices, poor IoT Systems implementations can even make things worse for institutions, corporations, or governments.

Internet2 Chief Innovation Office

i2logoThe mission of the Internet 2 Chief Innovation Office, led by Florence Hudson,  is to work with Internet2 members to define and develop new innovations around the Internet. The Innovation Program has three core working groups —

Internet2’s core offerings are its 100 gbps network and their NET+ services.  Their membership includes 300 Higher Education institutions and over 150 industry, lab, and national agency organizations.

Many IoT systems risk topics

Examples of topics that the Task Force will cover include IoT systems vendor management issues, network segmentation strategies and approaches, cost estimating tools and approaches for IoT systems, potential tool development and/or partnering with organizations that perform Internet-wide scanning for IoT-related systems, and the organizational and cultural issues encountered in transitioning to a data-centric organization.

IoT systems vendor management approaches

Organizations and institutions need to raise the bar with IoT systems vendors regarding what constitutes a successfully delivered product or service. For example, has the vendor delivered documentation showing the final installation architecture, have default logins & passwords been change on all devices (how is this demonstrated), have all unnecessary services been deactivated on all devices and systems and how is this demonstrated?

Development of common ‘backends’ for IoT systems

Current IoT systems (to include utility distribution, building automation systems, many others) vendor approaches require that institutions invest in separate and proprietary ‘backend’ architectures consisting of application servers, databases, etc for each different vendor. This is an approach that does not lend itself to manageability, extensibility, or scalability.  In this space, perhaps newer container and container management technologies offer solutions as well as other possibilities.

1200px-Internet_of_things_wilgengebroedDevelopment of network segmentation/micro-segmentation strategies and approaches for IoT Systems

Network segmentation seems to offer great promise for mitigating risk around IoT Systems implementations. However, without appropriate guidance for IoT network segmentation implementation and operation, institutions can end up with a full portfolio of poorly managed network segments. Exploration and development of institutional network segmentation best practices can serve to lower an organization’s risk profile.

Development of cost estimating tools and approaches for IoT Systems

There is little in the way of precedent for cost models for the rapidly evolving IoT systems space and, as such, planning for IoT Systems and trying to estimate Total Cost of Ownership is difficult and nuanced. Exploration of and development of IoT Systems cost models can be of real value to institutions making planning and resourcing decisions.

Development of risk language & risk categories around IoT systems

Currently it is difficult to discuss new risk brought on by IoT systems with enterprise risk managers because IoT systems themselves are difficult to describe and discuss.  Development and socializing IoT risk language, that incorporates existing familiar institutional risk language, would enhance the ability to discuss IoT systems risk at the enterprise level. This Task Force will explore this nuanced space as well.

Analysis tool development and partnering

The Task Force will explore tool development and/or partnerships with organizations that scan the Internet for industrial control systems and IoT systems and publish these results online. Exploring internal tool development of the same is also a possibility. Development of benchmarks and baselines of Internet-scanning results across different industries and market sectors will also be considered.

Organizational cultural barriers to successful implementation of IoT Systems

Changing from a traditional organization to a data centric organization is a non-trivial transition and not addressing these issues can be a barrier to successful implementations of IoT Systems in institutions, organizations, and cities. The Task Force will study this important space as well.

Early Task Force work will also include identifying and enumerating other independent and overlapping risk areas (operational, cyber, cultural, and others). Over the year, Task Force members will participate in phone conferences, listen to subject matter expert presentations, and identify, discuss, and prioritize IoT Systems issues. Finally, recommendations will be made for further focused work on the highest priority areas.  If you have questions, comments, further interest, please contact me ChuckBenson@longtailrisk.com or the Internet2 Chief Innovation Office at CINO@internet2.edu.

 

[IoT image above: By Wilgengebroed on Flickr – https://www.flickr.com/photos/wilgengebroed/8249565455/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=32745541]